211 research outputs found

    Calculation of the Voronoi boundary for lens-shaped particles and spherocylinders

    Get PDF
    We have recently developed a mean-field theory to estimate the packing fraction of non-spherical particles [A. Baule et al., Nature Commun. (2013)]. The central quantity in this framework is the Voronoi excluded volume, which generalizes the standard hard-core excluded volume appearing in Onsager's theory. The Voronoi excluded volume is defined from an exclusion condition for the Voronoi boundary between two particles, which is usually not tractable analytically. Here, we show how the technical difficulties in calculating the Voronoi boundary can be overcome for lens-shaped particles and spherocylinders, two standard prolate and oblate shapes with rotational symmetry. By decomposing these shapes into unions and intersections of spheres analytical expressions can be obtained.Comment: 19 pages, 8 figure

    Consistency-Preserving Evolution Planning on Feature Models

    Get PDF
    A software product line (SPL) enables large-scale reuse in a family of related software systems through configurable features. SPLs represent a long-term investment so that their ongoing evolution becomes paramount and requires careful planning. While existing approaches enable to create an evolution plan for an SPL on feature-model (FM) level, they assume the plan to be rigid and do not support retroactive changes. In this paper, we present a method that enables to create and retroactively adapt an FM evolution plan while preventing undesired impacts on its structural and logical consistency. This method is founded in structural operational semantics and linear temporal logic. We implement our method using rewriting logic, integrate it within an FM tool suite and perform an evaluation using a collection of existing FM evolution scenarios

    Intracellularly Released Cholesterol from Polymer-Based Delivery Systems Alters Cellular Responses to Pneumolysin and Promotes Cell Survival

    Get PDF
    Cholesterol is highly abundant within all human body cells and modulates critical cellular functions related to cellular plasticity, metabolism, and survival. The cholesterol-binding toxin pneumolysin represents an essential virulence factor of Streptococcus pneumoniae in establishing pneumonia and other pneumococcal infections. Thus, cholesterol scavenging of pneumolysin is a promising strategy to reduce S. pneumoniae induced lung damage. There may also be a second cholesterol-dependent mechanism whereby pneumococcal infection and the presence of pneumolysin increase hepatic sterol biosynthesis. Here we investigated a library of polymer particles varying in size and composition that allow for the cellular delivery of cholesterol and their effects on cell survival mechanisms following pneumolysin exposure. Intracellular delivery of cholesterol by nanocarriers composed of Eudragit E100-PLGA rescued pneumolysin-induced alterations of lipid homeostasis and enhanced cell survival irrespective of neutralization of pneumolysin

    The solid-state photo-CIDNP effect

    Get PDF
    The solid-state photo-CIDNP effect is the occurrence of a non-Boltzmann nuclear spin polarization in rigid samples upon illumination. For solid-state NMR, which can detect this enhanced nuclear polarization as a strong modification of signal intensity, the effect allows for new classes of experiments. Currently, the photo- and spin-chemical machinery of various RCs is studied by photo-CIDNP MAS NMR in detail. Until now, the effect has only been observed at high magnetic fields with 13C and 15N MAS NMR and in natural photosynthetic RC preparations in which blocking of the acceptor leads to cyclic electron transfer. In terms of irreversible thermodynamics, the high-order spin structure of the initial radical pair can be considered as a transient order phenomenon emerging under non-equilibrium conditions and as a first manifestation of order in the photosynthetic process. The solid-state photo-CIDNP effect appears to be an intrinsic property of natural RCs. The conditions of its occurrence seem to be conserved in evolution. The effect may be based on the same fundamental principles as the highly optimized electron transfer. Hence, the effect may allow for guiding artificial photosynthesis
    corecore